Schwarz Triangle Mappings and Teichmüller Curves: Abelian Square-tiled Surfaces

نویسنده

  • ALEX WRIGHT
چکیده

We consider normal covers of CP with abelian deck group, branched over at most four points. Families of such covers yield arithmetic Teichmüller curves, whose period mapping may be described geometrically in terms of Schwarz triangle mappings. These Teichmüller curves are generated by abelian square-tiled surfaces. We compute all individual Lyapunov exponents for abelian squaretiled surfaces, and demonstrate a direct and transparent dependence on the geometry of the period mapping. For this we develop a result of independent interest, which, for certain rank two bundles, expresses Lyapunov exponents in terms of the period mapping. In the case of abelian square-tiled surfaces, the Lyapunov exponents are ratios of areas of hyperbolic triangles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schwarz Triangle Mappings and Teichmüller Curves: the Veech-ward-bouw-möller Curves

We study a family of Teichmüller curves T (n,m) constructed by Bouw and Möller, and previously by Veech and Ward in the cases n = 2, 3. We simplify the proof that T (n,m) is a Teichmüller curve, avoiding the use Möller’s characterization of Teichmüller curves in terms of maximally Higgs bundles. Our key tool is a description of the period mapping of T (n,m) in terms of Schwarz triangle mappings...

متن کامل

On the Teichmüller geodesic generated by the L-shaped translation surface tiled by three squares

We study the one parameter family of genus 2 Riemann surfaces defined by the orbit of the L-shaped translation surface tiled by three squares under the Teichmüller geodesic flow. These surfaces are real algebraic curves with three real components. We are interested in describing these surfaces by their period matrices. We show that the only Riemann surface in that family admitting a non-hyperel...

متن کامل

Billiards and Teichmüller curves on Hilbert modular surfaces

This paper exhibits an infinite collection of algebraic curves isometrically embedded in the moduli space of Riemann surfaces of genus two. These Teichmüller curves lie on Hilbert modular surfaces parameterizing Abelian varieties with real multiplication. Explicit examples, constructed from L-shaped polygons, give billiard tables with optimal dynamical properties.

متن کامل

5 Siegel – Veech Constants in H ( 2 )

Abelian differentials on Riemann surfaces can be seen as translation surfaces, which are flat surfaces with cone-type singularities. Closed geodesics for the associated flat metrics form cylinders, whose number under a given maximal length generically has quadratic asymptotics in this length. Siegel–Veech constants are coefficients of these quadratic growth rates, and coincide for almost all su...

متن کامل

Teichmüller spaces, triangle groups and Grothendieck dessins

This survey article considers moduli of algebraic curves using techniques from the complex analytic Teichmüller theory of deformations for the underlying Riemann surfaces and combinatorial topology of surfaces. The aim is to provide a readable narrative, suitable for people with a little background in complex analysis, hyperbolic plane geometry and discrete groups, who wish to understand the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012